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Abstract-In order to predict fatigue lifetime in cooled turbine blades it is necessary to know
stabilized cyclic stress and strain fields for typical ground-to-ground cycle.

Previous works permit to obtain the viscoplastic temperature dependent behavior and the
classical one-dimensional plane cross-section method gives the stress and strain fields on the
blade.

However this classical method does not take into account the restraining effects of moments
due to action of centrifugal forces on the deflected blade. This paper presents an extension of
the plane cross-section method in which the coupled problem induced by these restraining
effects is solved without iteration.

Results are given for a turbine blade made ora refractory alloy and compared with the case in
which restraining effects are neglected.

I. INTRODUCTION

In order to predict lifetime in fatigue of metallic structures at elevated temperature, classical
methods involve stabilized cycle characteristics: maximum and mean stresses, viscoplastic or
total strain range, energy of dissipation . . .[1-3]. Such quantities cannot be generally
measured in structures, they have to be calculated; this is a difficult problem in the case of
high temperature where viscoplastic behavior gives rise to a highly non-linear process.

In a previous work[4] a simple method, applicable in the elasto-viscoplastic range, has
been developed in order to calculate the stress and strain fields in a turbine blade for any
cyclic program of temperature and loads. The two main hypotheses are: (I) an isotropic
strain-hardening behavior for the material, and (2) that a plane cross-section of the blade
remains plane. This gives a one-dimensional problem which constitutes a particular case of a
general three-dimensional method[5]. However this method does not take into account the
restraining effects of moments due to the action of the centrifugal forces on the deflected
blade.

Here the plane cross-section method is developed in order to solve without iteration the
statically indeterminate problem arising by the introduction of these restraining effects.

II. CONSTITUTIVE EQUATIONS

The one-dimensional constitutive equations used here are a particular case of three­
dimensional constitutive equations written by Lemaitre[6], which constitute a generalization
of laws previously developed by Odqvist et al. ; for any kind of loading, written for rates of
parameters, each of them being time and x, y, z coordinates dependent:

Partition equation:
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Derived Hooke's law:

Thermal expansion rate:

Viscoplastic law:

. .e E(J=Ee +-(J
E

eth = aT + aT
eP = hW, 0')0'

(2)

(3)

(4)

where 0' is the stress, e, ee, eP, eth are respectively the total, elastic, viscoplastic and thermal
strains, T is the temperature, a is the linear thermal expansion coefficient, and E is the
Young's modulus; h is a non-linear function which is temperature dependent. eP is the work­
hardening-cumulant parameter which can be taken as

eP = r leP(r) I dr
o

for isotropic materials.
This parameter gives good results in the case of quasi-static loading [5,7], but in the case

of cyclic loading it is only approximate.

III. METHOD OF CALCULAnON

1. General

Consider a cooled turbine blade on which thermal gradients are important and are func­
tions of time for the ground-to-ground cycle; centrifugal forces and aerodynamic loading are
acting also .as functions of time: vibration effects are neglected. Then we are dealing with a
quasi-static problem for one cycle. Twist and torque on the blade are neglected.

Classical blade compensation is made for maximum stress regime[8] with resultant
moments that are small or zero. However, thermal gradients induce bending of the blade,
out of the compensation line, and it is necessary to take into account the restraining moments
induced by centrifugal forces.
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Fig. 1. Blade configuration.
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Stress calculations on a blade without centrifugal restraining moments is classical, by
superposition of many cross-sections by means of the plane cross-section method[2,9].
Two extreme cases (no moments or no cross-section rotation) show a big difference on stress
values and emphasize the necessity of taking into account the restraining moments[4].

A coupled problem arises because restraining moments are functions of deflections, and
we could conclude that an iterative process is needed. One of the purposes of the method
described below is to solve the problem without iteration, which, in a viscoplastic problem,
saves computer time.

2. Method description

2.1 Displacement calculation. The assumption is made that plane sections remain plane,
but rotation is allowed. In x, y, z coordinates (see Fig. 1) we can write:

a(x, y, z) = A(z) + B(z)x + C(z)y

where A(z) is the strain along the neutral axis, B(z) and C(z) are the curvatures respectively
in the x-z and y-z planes. The blade is split up into n equidistant cross-sections, each of them
being decomposed into independent z axis elements, and we suppose that Band C vary as
linear functions from one cross-section to the following:

with p = Zk+1 - Zk.

In order to find the displacements u(z) and v(z) of the neutral axis, we use the fundamental
beam equation:

u"(z) = - B(z)

v"(z) = - C(z)

(the sign - is due to the definition of Band C in the plane cross-section hypothesis).
Integrating twice between Zk-I and Zk we obtain:

uk = uk-I - ~ (Bk + Bk - I )

, p2
Uk = Uk-I + PUk - 1 - 6" (Bk + 2Bk - I )·

A double recurrence gives Uk as a linear function of the curvatures:

In order to solve the problem, we have substituted the first term of Uk by - ~ p2BI . This

gives a small error which can be considered as a second order error in regards of initial
hypothesis. Proceeding in the same way for Vk we have finally:
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I 2
Ul = - (; P B 1

I 2
VI = - (; P C1

k-l

Uk = Ul - p2 L (k - j)Bj
j=1

k-l

Vk = VI - p2 L (k - j)Cj •
j= 1

(5)

2.2 Force and moments calculation. We assume that the mass of each cross-section is con­
centrated on its gravity center. Force F i acting on the ith cross-section results from centri­
fugal forces induced by each mass mk , for k > i:

n n

F i = L h = L mk W2Zk'
k=i+ 1 k=i+ 1

(6)

In order to calculate moments acting on the ith cross-section we neglect displacement in
regard to the Z axis. Forces contributing to the moments on each cross-section are (gi ,gf,/"),
where gi and gi are aerodynamic loads.

n

M l = L [(vk - v;)/" - (Zk - zi)gf>
k=i+ 1

n

Ml = L [(Zk - zi)gl - (Uk - Ui)/"]
k=i+l

M f = 0 (Torque neglected).

Then for instantaneous variations:

n n

Ml = L (vk - vJj~ + L [(vk - VJJk - (Zk - Zi)Of]
k=i+l k=i+l

n n

Ml = - L (Uk - u;)fk - L [(Uk - Ui)Jk - (Zk - z;)ol]·
k=i+l k=i+l

(7)

The first terms of second members of these equations can be rederived with equations (5):

n n-1

L (vk - V;)fk = - L AijGj
k=;+1 j=1

n "-1

- L (Uk - u;)/" = L A;J3j
k=i+l j=l

n

with Aij = Aji = p2 L (k - i)fk'
k=i+ 1

2.3 One cross-section equilibrium (ith cross-section).
-Quasi static equilibrium:

(8)

f . .1
ay ds = M i

Si

f (Txds= - Mf
Si

(9)

Si being the i cross-section area.
-Plane cross-section hypothesis:

e= Ai + Bix + Giy· (10)
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Matching this equation with constitutive equations (1-3) gives:

. .. . E
0- = E(Ai + Bix + Ciy - eP -rxT- eXT) + EU

introducing in equation (9) we obtain the system:

[~i~ ~i: ~~:] x [t] '= [-~r] + f.. [EW + rxt+ eXT) -~U] [~]dS
K 13 K23 K33 Ci M i Y

where 3 x 3 matrix K i is:
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(11)

(12)

Coupling appears in the first column of the second member which contains {Bj , [:j}j: ~ as
unknowns. Writing system (12) for each cross-section it is possible to transfer the unknowns
to the first member, which avoids iteration. Then we obtain the following 3n - 3 order
symmetrical system:

Kl1 Kl2 Kl3

K n- 1 K n- 1 K n- 1
11 12 k3

Kl2 Ki3
<1>

K n- 1 Kn-l
12 23

Kl3 Ki3

'P
Kn- I K n- 1

13 23

Al PI

An- 1 Pn- 1

B1 Ql
X

Bn- 1 Qn-l

[:1 R1

[:n-l Rn- 1

<1> and 'P matrices are (with bij Kronecker delta symbol):

The load vectors are:

n [ • E ]Pi = ~ Jk + J EW + rxT + eXT) - - u dS
k=,+ 1 s, E

Qi = - t [(Uk - Ui)A - (Zk - zi)gll + f [EW + rxt + eXT) - ~ u]x dS
k=,+ 1 s, E

R i = t [(Vk - VJJk - (Zk - zJgf] + J [EW + rxt + eXT) - ~ u] y dS.
k=,+ 1 s, E
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This system can easily be reduced to an n - 1 order system.
2.4. Step-by-step linearization procedure. The problem is solved by linearization at each

step:

-At time t the following quantities are given: rotational speed, aerodynamic loads,
temperatures, and the derivatives of all these terms. Constitutive material characteristics are
known as functions of temperature.

-At time t stress and viscoplastic strain fields are known for each cross-section from the
preceding calculations.

-Viscoplastic constitutive equation (4) gives the viscoplastic strain rate field, then the
second member of system (13) can be evaluated, which gives {A j , Bj , C}j:~. Instantaneous
variations of displacements and stresses are easily deduced by the equations (5) and (11).

-From t to t + At the first order Taylor's formulae are applied, At being automatically
chosen so as to limit the error due to the neglect of second order terms[IO]: hence this step
is small when the viscoplastic strain rate is rapidly varying and is very large in the stationary
case.

-The first step, arbitrarily small, is calculated as elastic for the stresses.

IV. APPLICATION AND RESULTS

This method has been applied to a cooled turbine blade made of a refractory alloy. The
viscoplastic law was particularized by:

where n, m, K were respectively viscosity, strain-hardening and strength parameters. These
parameters were experimentally determined, between 500-1 100°C, by relaxation, constant
strain rate and creep tests. The law has been validated by comparisons made between experi­
mental and theoretical results in complex tension compression tests with time dependent
temperature.

The temperature field on the blade and its evolution for a ground-to-ground cycle is given
by calculations[ll]. They are shown in Fig. 2.

Calculations are made successively for 4, 6, 8, 10 superposed and coupled cross-sections,
each of them being decomposed into 140 elements. The deflections obtained at a given time
are presented in Fig. 3. We can see a good correlation for convergence with a minimum
number of cross-sections, :nd the difference with calculations made without centrifugal
restraining effects.

The strain range quantities required as inputs to a failure criteria were calculated by the
two methods. Figure 4 demonstrates the results by means of contour plots of these values on
a typical blade planform and Figs. 5 and 6 show variations of these quantities along the
radial axis of the blade (z coordinate).

One can see that the results of calculations made without restraining effects, are not as
satisfactory as regards security.
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Fig. 2. Temperature distribution and evolution.
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Fig. 3. Blade deflections.
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Fig. 4. Fatigue parameter distribution for one cross-section:
l1et : total mechanical strain range.
l1e,: viscoplastic strain range.
11 W: variation of viscoplastic energy density:

11 W = Seyele a(T)i'(T) dT.
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Fig. 6. Distribution of llE p along z axis.

V. CONCLUSION

These results show that the influence of the centrifugal restraining moments is important
for the knowledge of the precise stress and strain history and of the quantities involved in
fatigue criteria. For instance, the works of Manson, Coffin and other authors show that a
viscoplastic strain range increase of about 20 per cent could produce a lifetime diminution
of 40 or 50 per cent.

Hence, in further works with more sophisticated codes and more complicated laws, it
would be interesting and important to take into account these restraining effects.
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A6cTpaKT - B n:eJIbIO npe.L\CKa3aHIUI .L\OJITOBe'IHOCTH YCTllJIOCTH B OXJIaJIC)J,eHHblX JIOnaTKax
TYP6HHbI RBJIlIeTCji H}')KHb1M 3HaHHe IIOJIeil: cTa6HJIH3HpOBaHHbiX I.\lfKJllI'IecKIIX HaIIpJDICeHHil: H

.L\elPoPMllUHil: ,L\JIlI THlIH'lHOro Y3eMJIeHHOrO I.\HKJIa.
TIpe.L\bl.z:lYlUlle pa60Tbi .L\aJOT B03~mlKHOCTb IIOJIY'iHTb Bji3KOIIJIaCTJlllecKoe IIOBe.L\eHHe B

3aBHCHMOCTH OT TeMIIepaTYpbl. MeTo.L\ KJIaccH'fecKoro O.L\HOMepHoro IIJIOCKOrO pa3peJa
oIIpe.lleJllleT IIOJIji HaIIpJDICeHHHil: H .lle4>oPMaI.\HH B JIOlIaTKe.
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3TOT KJIaCCH'IeCKH:il: MeTOA, OAHaKO, He ycmTbIBaeT J$«PeKTOB OrpaHH'leHHJI MOMeHTa,

BbI3BaHHOro Ae:il:cTBHeM ueHTpo6elKHbIX CHJI Ha .lle$opMHpOBaHH)'lO JIorraTIcy. TIpeMaraeMaR

pa60Ta AaeT o606rueHHe MeTOAa rrJIOCKOrO paJpe3a, B KOTOpOM corrpIDKeHHaJi 3aAa'la,

BbI3BaHHaR JTHMH J«P«PeKTaMH OrpaHH'IeHHJI, peilieHa 6e3 IIOMOruH HrepauHH.

)J;aroTCJI pe3YJIbTaTbI .llJIJI JIOrraTKH Typ6HHbI, H3rOTOBJIeHHo:il: H3 lKapOCTo:il:Koro CrrJIaBa H

cpaBHHBaIOTCll: co CJIY'IaeM, AJIll: KOToporo J«l>«PeKTbI OrpaHH'IeHHJI rrpeHe6peraIOTCll:.


